Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 13(4)2021 04 08.
Article in English | MEDLINE | ID: mdl-33917845

ABSTRACT

Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibiotic-associated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.


Subject(s)
Antibodies, Monoclonal , Claudin-4/metabolism , Clostridium Infections/diagnosis , Clostridium perfringens/metabolism , Enterotoxins/analysis , Enzyme-Linked Immunosorbent Assay , Foodborne Diseases/diagnosis , Animals , Antibody Affinity , Antibody Specificity , Automation, Laboratory , Claudin-4/genetics , Claudin-4/immunology , Clostridium Infections/microbiology , Clostridium perfringens/genetics , Clostridium perfringens/immunology , Enterotoxins/genetics , Enterotoxins/immunology , Enterotoxins/metabolism , Epitope Mapping , Epitopes , Feces , Foodborne Diseases/microbiology , Humans , Limit of Detection , Mice , Predictive Value of Tests , Protein Binding , Reproducibility of Results , Workflow
2.
Toxins (Basel) ; 12(12)2020 11 26.
Article in English | MEDLINE | ID: mdl-33255952

ABSTRACT

The extraordinarily potent clostridial neurotoxins (CNTs) comprise tetanus neurotoxin (TeNT) and the seven established botulinum neurotoxin serotypes (BoNT/A-G). They are composed of four structurally independent domains: the roles of the catalytically active light chain, the translocation domain HN, and the C-terminal receptor binding domain HCC are largely resolved, but that of the HCN domain sandwiched between HN and HCC has remained unclear. Here, mutants of BoNT/A, BoNT/B, and TeNT were generated by deleting their HCN domains or swapping HCN domains between each other. Both deletion and replacement of TeNT HCN domain by HCNA and HCNB reduced the biological activity similarly, by ~95%, whereas BoNT/A and B deletion mutants displayed >500-fold reduced activity in the mouse phrenic nerve hemidiaphragm assay. Swapping HCN domains between BoNT/A and B hardly impaired their biological activity, but substitution with HCNT did. Binding assays revealed that in the absence of HCN, not all receptor binding sites are equally well accessible. In conclusion, the presence of HCN is vital for CNTs to exert their neurotoxicity. Although structurally similar, the HCN domain of TeNT cannot equally substitute those of BoNT and vice versa, leaving the possibility that HCNT plays a different role in the intoxication mechanism of TeNT.


Subject(s)
Botulinum Toxins/chemistry , Tetanus Toxin/chemistry , Amino Acid Sequence , Animals , Gangliosides/metabolism , Liposomes/metabolism , Mice , Phrenic Nerve/drug effects , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Sequence Deletion
3.
Toxins (Basel) ; 11(10)2019 10 11.
Article in English | MEDLINE | ID: mdl-31614566

ABSTRACT

The detection of catalytically active botulinum neurotoxins (BoNTs) can be achieved by monitoring the enzymatic cleavage of soluble NSF (N-ethylmaleimide-sensitive-factor) attachment protein receptor (SNARE) proteins by the toxins' light chains (LC) in cleavage-based assays. Thus, for sensitive BoNT detection, optimal cleavage conditions for the clinically relevant A-F serotypes are required. Until now, a systematic evaluation of cleavage conditions for the different BoNT serotypes is still lacking. To address this issue, we optimized cleavage conditions for BoNT/A-F using the Taguchi design-of-experiments (DoE) method. To this aim, we analyzed the influence of buffer composition (pH, Zn2+, DTT (dithiothreitol), NaCl) as well as frequently used additives (BSA (bovine serum albumin), Tween 20, trimethylamine N-oxide (TMAO)) on BoNT substrate cleavage. We identified major critical factors (DTT, Zn2+, TMAO) and were able to increase the catalytic efficiency of BoNT/B, C, E, and F when compared to previously described buffers. Moreover, we designed a single consensus buffer for the optimal cleavage of all tested serotypes. Our optimized buffers are instrumental to increase the sensitivity of cleavage-based assays for BoNT detection. Furthermore, the application of the Taguchi DoE approach shows how the method helps to rationally improve enzymatic assays.


Subject(s)
Botulinum Toxins/pharmacology , Synaptosomal-Associated Protein 25/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Buffers , Escherichia coli/genetics , Recombinant Proteins/metabolism , Serogroup , Synaptosomal-Associated Protein 25/genetics , Vesicle-Associated Membrane Protein 2/genetics
4.
Sci Rep ; 9(1): 5531, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940836

ABSTRACT

Botulinum neurotoxins (BoNTs) are the most potent toxins known and cause the life threatening disease botulism. Sensitive and broad detection is extremely challenging due to the toxins' high potency and molecular heterogeneity with several serotypes and more than 40 subtypes. The toxicity of BoNT is mediated by enzymatic cleavage of different synaptic proteins involved in neurotransmitter release at serotype-specific cleavage sites. Hence, active BoNTs can be monitored and distinguished in vitro by detecting their substrate cleavage products. In this work, we developed a comprehensive panel of monoclonal neoepitope antibodies (Neo-mAbs) highly specific for the newly generated N- and/or C-termini of the substrate cleavage products of BoNT serotypes A to F. The Neo-mAbs were implemented in a set of three enzymatic assays for the simultaneous detection of two BoNT serotypes each by monitoring substrate cleavage on colour-coded magnetic Luminex-beads. For the first time, all relevant serotypes could be detected in parallel by a routine in vitro activity assay in spiked serum and food samples yielding excellent detection limits in the range of the mouse bioassay or better (0.3-80 pg/mL). Therefore, this work represents a major step towards the replacement of the mouse bioassay for botulism diagnostics.


Subject(s)
Antibodies, Monoclonal/metabolism , Botulinum Toxins/analysis , Clostridium botulinum/isolation & purification , Animals , Botulinum Toxins/chemistry , Botulinum Toxins/immunology , Botulinum Toxins, Type A/analysis , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/immunology , Clostridium botulinum/immunology , Epitopes/immunology , Limit of Detection , Mice , Microarray Analysis , Serogroup
5.
Clin Neurophysiol ; 130(6): 1066-1073, 2019 06.
Article in English | MEDLINE | ID: mdl-30871800

ABSTRACT

OBJECTIVES: Botulinum neurotoxin serotypes A and B (BoNT/A & B) are highly effective medicines to treat hyperactive cholinergic neurons. Due to neutralizing antibody formation, some patients may become non-responders. In these cases, the serotypes BoNT/C-G might become treatment alternatives. BoNT/D is genetically least related to BoNT/A & B and thereby circumventing neutralisation in A/B non-responders. We produced BoNT/D and compared its pharmacology with BoNT/A ex vivo in mice tissue and in vivo in human volunteers. METHODS: BoNT/D was expressed recombinantly in E. coli, isolated by chromatography and its ex vivo potency was determined at mouse phrenic nerve hemidiaphragm preparations. Different doses of BoNT/D or incobotulinumtoxinA were injected into the extensor digitorum brevis (EDB) muscles (n = 30) of human volunteers. Their compound muscle action potentials were measured 11 times by electroneurography within 220 days. RESULTS: Despite a 3.7-fold lower ex vivo potency in mice, a 110-fold higher dosage of BoNT/D achieved the same clinical effect as incobotulinumtoxinA while showing a 50% shortened duration of action. CONCLUSIONS: BoNT/D blocks dose-dependently acetylcholine release in human motoneurons upon intramuscular administration, but its potency and duration of action is inferior to approved BoNT/A based drugs. SIGNIFICANCE: BoNT/D constitutes a potential treatment alternative for BoNT/A & B non-responders.


Subject(s)
Botulinum Toxins, Type A/administration & dosage , Botulinum Toxins/administration & dosage , Muscle, Skeletal/drug effects , Neuromuscular Agents/administration & dosage , Adult , Animals , Humans , Male , Mice , Muscle, Skeletal/physiology , Treatment Outcome
6.
Nat Commun ; 9(1): 5367, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560862

ABSTRACT

Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic ß-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery.


Subject(s)
Botulinum Toxins, Type A/metabolism , Intracellular Membranes/metabolism , Neurons/metabolism , Neurotoxins/metabolism , Amino Acid Sequence , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/isolation & purification , Crystallography, X-Ray , Cytosol/metabolism , Endosomes/metabolism , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Liposomes/metabolism , Models, Molecular , Neurons/cytology , Neurotoxins/chemistry , Neurotoxins/isolation & purification , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Viral Envelope Proteins/chemistry
7.
Toxins (Basel) ; 10(8)2018 08 01.
Article in English | MEDLINE | ID: mdl-30071628

ABSTRACT

In the recent past, about 40 botulinum neurotoxin (BoNT) subtypes belonging to serotypes A, B, E, and F pathogenic to humans were identified among hundreds of independent isolates. BoNTs are the etiological factors of botulism and represent potential bioweapons; however, they are also recognized pharmaceuticals for the efficient counteraction of hyperactive nerve terminals in a variety of human diseases. The detailed biochemical characterization of subtypes as the basis for development of suitable countermeasures and possible novel therapeutic applications is lagging behind the increase in new subtypes. Here, we report the primary structure of a ninth subtype of BoNT/F. Its amino-acid sequence diverges by at least 8.4% at the holotoxin and 13.4% at the enzymatic domain level from all other known BoNT/F subtypes. We found that BoNT/F9 shares the scissile Q58/K59 bond in its substrate vesicle associated membrane protein 2 with the prototype BoNT/F1. Comparative biochemical analyses of four BoNT/F enzymatic domains showed that the catalytic efficiencies decrease in the order F1 > F7 > F9 > F6, and vary by up to a factor of eight. KM values increase in the order F1 > F9 > F6 ≈ F7, whereas kcat decreases in the order F7 > F1 > F9 > F6. Comparative substrate scanning mutagenesis studies revealed a unique pattern of crucial substrate residues for each subtype. Based upon structural coordinates of F1 bound to an inhibitor polypeptide, the mutational analyses suggest different substrate interactions in the substrate binding channel of each subtype.


Subject(s)
Botulinum Toxins/chemistry , Peptides/chemistry , Vesicle-Associated Membrane Protein 2/chemistry , Catalysis , Substrate Specificity
8.
PLoS Pathog ; 14(5): e1007048, 2018 05.
Article in English | MEDLINE | ID: mdl-29718991

ABSTRACT

The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin's cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity.


Subject(s)
Botulinum Toxins/genetics , Botulinum Toxins/metabolism , Animals , Binding Sites , Botulinum Toxins, Type A/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Crystallography, X-Ray , Gangliosides , Hydrophobic and Hydrophilic Interactions , Lipids , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Conformation , Receptors, Neurotransmitter/metabolism , Serogroup , Synaptic Vesicles
9.
Pathog Dis ; 76(4)2018 06 01.
Article in English | MEDLINE | ID: mdl-29688327

ABSTRACT

The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2 recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Šresolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.


Subject(s)
Botulinum Toxins, Type A/chemistry , Clostridium botulinum/chemistry , Vesicle-Associated Membrane Protein 2/chemistry , Amino Acid Sequence , Binding Sites , Botulinum Toxins, Type A/genetics , Botulinum Toxins, Type A/metabolism , Cloning, Molecular , Clostridium botulinum/enzymology , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutagenesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Substrate Specificity , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
10.
Sci Rep ; 7(1): 7438, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785006

ABSTRACT

Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.


Subject(s)
Antibodies, Neutralizing/pharmacology , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/metabolism , Camelidae/immunology , Nerve Tissue Proteins/metabolism , Animals , Antibodies, Neutralizing/chemistry , Binding Sites , Crystallography, X-Ray , Gangliosides/metabolism , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/pharmacology , Models, Molecular , Protein Binding , Protein Conformation , Rats , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology
11.
Toxins (Basel) ; 9(3)2017 03 08.
Article in English | MEDLINE | ID: mdl-28282873

ABSTRACT

Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A-G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (HC) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.


Subject(s)
Botulinum Toxins/chemistry , Neurotoxins/chemistry , Botulinum Toxins/genetics , Botulinum Toxins/metabolism , Neurotoxins/genetics , Neurotoxins/metabolism , Protein Binding , Protein Domains
12.
Analyst ; 141(18): 5281-97, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27353114

ABSTRACT

Botulinum neurotoxin (BoNT) serotypes C and D and their mosaic variants CD and DC cause severe cases of botulism in animal husbandry and wildlife. Epidemiological data on the exact serotype or toxin variant causing outbreaks are rarely available, mainly because of their high sequence identity and the lack of fast and specific screening tools to detect and differentiate the four similar toxins. To fill this gap, we developed four highly specific sandwich enzyme-linked immunosorbent assays (ELISAs) able to detect and differentiate botulinum neurotoxins type BoNT/C, D, CD, and DC based on four distinct combinations of specific monoclonal antibodies targeting both conserved and divergent subdomains of the four toxins. Here, highly sensitive detection with detection limits between 2 and 24 pg mL(-1) was achieved. The ELISAs were extensively validated and results were compared with data obtained by quantitative real-time PCR using a panel of Clostridium botulinum strains, real sample materials from veterinary botulism outbreaks, and non-BoNT-producing Clostridia. Additionally, in order to verify the results obtained by ELISA screening, the new monoclonal antibodies were used for BoNT enrichment and subsequent detection (i) on a functional level by endopeptidase mass spectrometry (Endopep-MS) assays and (ii) on a protein sequence level by LC-MS/MS spectrometry. Based on all technical information gathered in the validation study, the four differentiating ELISAs turned out to be highly reliable screening tools for the rapid analysis of veterinary botulism cases and should aid future field investigations of botulism outbreaks and the acquisition of epidemiological data.


Subject(s)
Botulinum Toxins/classification , Enzyme-Linked Immunosorbent Assay , Mass Spectrometry , Amino Acid Sequence , Animals , Clostridium botulinum , Serogroup
13.
Toxins (Basel) ; 8(5)2016 05 17.
Article in English | MEDLINE | ID: mdl-27196927

ABSTRACT

Botulinum neurotoxins (BoNTs) exhibit extraordinary potency due to their exquisite neurospecificity, which is achieved by dual binding to complex polysialo-gangliosides and synaptic vesicle proteins. The luminal domain 4 (LD4) of the three synaptic vesicle glycoprotein 2 isoforms, SV2A-C, identified as protein receptors for the most relevant serotype BoNT/A, binds within the 50 kDa cell binding domain HC of BoNT/A. Here, we deciphered the BoNT/A-SV2 interactions in more detail. In pull down assays, the binding of HCA to SV2-LD4 isoforms decreases from SV2C >> SV2A > SV2B. A binding constant of 200 nM was determined for BoNT/A to rat SV2C-LD4 in GST pull down assay. A similar binding constant was determined by surface plasmon resonance for HCA to rat SV2C and to human SV2C, the latter being slightly lower due to the substitution L563F in LD4. At pH 5, as measured in acidic synaptic vesicles, the binding constant of HCA to hSV2C is increased more than 10-fold. Circular dichroism spectroscopy reveals that the quadrilateral helix of SV2C-LD4 already exists in solution prior to BoNT/A binding. Hence, the BoNT/A-SV2C interaction is of different nature compared to BoNT/B-Syt-II. In particular, the preexistence of the quadrilateral ß-sheet helix of SV2 and its pH-dependent binding to BoNT/A via backbone-backbone interactions constitute major differences. Knowledge of the molecular details of BoNT/A-SV2 interactions drives the development of high affinity peptides to counteract BoNT/A intoxications or to capture functional BoNT/A variants in innovative detection systems for botulism diagnostic.


Subject(s)
Botulinum Toxins, Type A/metabolism , Membrane Glycoproteins/metabolism , Synaptotagmins/metabolism , Binding Sites
14.
Toxins (Basel) ; 7(12): 5035-54, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26703728

ABSTRACT

The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1-F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A1, B1 and E1, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A1, B1, E1 and F1 were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1-F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium.


Subject(s)
Botulinum Toxins/analysis , Neurotoxins/analysis , Animals , Botulinum Toxins/chemistry , Botulinum Toxins/toxicity , Female , Laboratory Proficiency Testing/standards , Lethal Dose 50 , Mice , Neurotoxins/chemistry , Neurotoxins/toxicity , Phrenic Nerve/drug effects , Phrenic Nerve/physiology , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/toxicity , Reference Standards , SNARE Proteins/chemistry
15.
PLoS One ; 10(2): e0116381, 2015.
Article in English | MEDLINE | ID: mdl-25658638

ABSTRACT

Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.


Subject(s)
Botulinum Toxins, Type A/genetics , Botulinum Toxins, Type A/metabolism , Botulism/epidemiology , Botulism/microbiology , Clostridium botulinum type A/genetics , Disease Outbreaks , Models, Molecular , Amino Acid Sequence , Base Sequence , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/classification , Botulism/pathology , Food, Preserved/microbiology , Germany/epidemiology , Humans , Male , Middle Aged , Molecular Sequence Data , Protein Binding , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology
16.
Biochem Pharmacol ; 93(2): 196-209, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462816

ABSTRACT

Membranous adenylyl cyclase 1 (AC1) is associated with memory and learning. AC1 is activated by the eukaryotic Ca(2+)-sensor calmodulin (CaM), which contains nine methionine residues (Met) important for CaM-target interactions. During ageing, Met residues are oxidized to (S)- and (R)-methionine sulfoxide (MetSO) by reactive oxygen species arising from an age-related oxidative stress. We examined how oxidation by H2O2 of Met in CaM regulates CaM activation of AC1. We employed a series of thirteen mutant CaM proteins never assessed before in a single study, where leucine is substituted for Met, in order to analyze the effects of oxidation of specific Met. CaM activation of AC1 is regulated by oxidation of all of the C-terminal Met in CaM, and by two N-terminal Met, M36 and M51. CaM with all Met oxidized is unable to activate AC1. Activity is fully restored by the combined catalytic activities of methionine sulfoxide reductases A and B (MsrA and B), which catalyze reduction of the (S)- and (R)-MetSO stereoisomers. A small change in secondary structure is observed in wild-type CaM upon oxidation of all nine Met, but no significant secondary structure changes occur in the mutant proteins when Met residues are oxidized by H2O2, suggesting that localized polarity, flexibility and structural changes promote the functional changes accompanying oxidation. The results signify that AC1 catalytic activity can be delicately adjusted by mediating CaM activation of AC1 by reversible Met oxidation in CaM. The results are important for memory, learning and possible therapeutic routes for regulating AC1.


Subject(s)
Adenylyl Cyclases/metabolism , Calmodulin/metabolism , Cell Membrane/metabolism , Methionine/metabolism , Animals , Cell Membrane/drug effects , Chickens , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Humans , Hydrogen Peroxide/pharmacology , Insecta , Oxidation-Reduction/drug effects , Sf9 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...